CGAL 5.1 - Polynomial
|
#include <Concepts/PolynomialTraits_d--PseudoDivisionRemainder.h>
This AdaptableBinaryFunction
computes the remainder of the pseudo division of two polynomials \( f\) and \( g\).
Given \( f\) and \( g \neq 0\) one can compute quotient \( q\) and remainder \( r\) such that \( D \cdot f = g \cdot q + r\) and \( degree(r) < degree(g)\), where \( D = leading\_coefficient(g)^{max(0, degree(f)-degree(g)+1)}\)
This functor computes \( r\).
AdaptableBinaryFunction
CopyConstructible
DefaultConstructible
Types | |
typedef PolynomialTraits_d::Polynomial_d | result_type |
typedef PolynomialTraits_d::Polynomial_d | first_argument_type |
typedef PolynomialTraits_d::Polynomial_d | second_argument_type |
Operations | |
result_type | operator() (first_argument_type f, second_argument_type g) |
Returns the remainder \( r\) of the pseudo division of \( f\) and \( g\) with respect to the outermost variable \( x_{d-1}\). More... | |
typedef PolynomialTraits_d::Polynomial_d PolynomialTraits_d::PseudoDivisionRemainder::first_argument_type |
typedef PolynomialTraits_d::Polynomial_d PolynomialTraits_d::PseudoDivisionRemainder::second_argument_type |
result_type PolynomialTraits_d::PseudoDivisionRemainder::operator() | ( | first_argument_type | f, |
second_argument_type | g | ||
) |
Returns the remainder \( r\) of the pseudo division of \( f\) and \( g\) with respect to the outermost variable \( x_{d-1}\).