CGAL 5.1 - Polynomial
PolynomialTraits_d::PseudoDivisionQuotient Class Reference

#include <Concepts/PolynomialTraits_d--PseudoDivisionQuotient.h>

Definition

This AdaptableBinaryFunction computes the quotient of the pseudo division of two polynomials \( f\) and \( g\).

Given \( f\) and \( g \neq 0\) one can compute quotient \( q\) and remainder \( r\) such that \( D \cdot f = g \cdot q + r\) and \( degree(r) < degree(g)\), where \( D = leading\_coefficient(g)^{max(0, degree(f)-degree(g)+1)}\)

This functor computes \( q\).

Refines:

AdaptableBinaryFunction

CopyConstructible

DefaultConstructible

See also
Polynomial_d
PolynomialTraits_d
PolynomialTraits_d::PseudoDivision
PolynomialTraits_d::PseudoDivisionRemainder
PolynomialTraits_d::PseudoDivisionQuotient

Types

typedef PolynomialTraits_d::Polynomial_d result_type
 
typedef PolynomialTraits_d::Polynomial_d first_argument_type
 
typedef PolynomialTraits_d::Polynomial_d second_argument_type
 

Operations

result_type operator() (first_argument_type f, second_argument_type g)
 Returns the quotient \( q\) of the pseudo division of \( f\) and \( g\) with respect to the outermost variable \( x_{d-1}\). More...
 

Member Typedef Documentation

◆ first_argument_type

◆ result_type

◆ second_argument_type

Member Function Documentation

◆ operator()()

result_type PolynomialTraits_d::PseudoDivisionQuotient::operator() ( first_argument_type  f,
second_argument_type  g 
)

Returns the quotient \( q\) of the pseudo division of \( f\) and \( g\) with respect to the outermost variable \( x_{d-1}\).