CGAL 5.1 - Bounding Volumes
CGAL::Min_ellipse_2_traits_2< K > Class Template Reference

#include <CGAL/Min_ellipse_2_traits_2.h>

Definition

template<typename K>
class CGAL::Min_ellipse_2_traits_2< K >

The class Min_ellipse_2_traits_2 is a traits class for CGAL::Min_ellipse_2<Traits> using the two-di-men-sional CGAL kernel.

The template parameter K must be a model for Kernel.

Is Model Of:
MinEllipse2Traits
See also
CGAL::Min_ellipse_2<Traits>
MinEllipse2Traits
Examples
Min_ellipse_2/min_ellipse_2.cpp.

Types

typedef unspecified_type Point
 typedef to K::Point_2. More...
 
typedef unspecified_type Ellipse
 internal type. More...
 

Access Functions

The Ellipse type provides the following access methods not required by the concept MinEllipse2Traits.

bool is_circle ()
 tests whether the ellipse is a circle. More...
 
void double_coefficients (double &r, double &s, double &t, double &u, double &v, double &w)
 gives a double approximation of the ellipse's conic equation. More...
 

Creation

 Min_ellipse_2_traits_2 ()
 default constructor. More...
 
 Min_ellipse_2_traits_2 (const Min_ellipse_2_traits_2< K > &)
 copy constructor. More...
 

Member Typedef Documentation

◆ Ellipse

template<typename K >
typedef unspecified_type CGAL::Min_ellipse_2_traits_2< K >::Ellipse

internal type.

◆ Point

template<typename K >
typedef unspecified_type CGAL::Min_ellipse_2_traits_2< K >::Point

typedef to K::Point_2.

Constructor & Destructor Documentation

◆ Min_ellipse_2_traits_2() [1/2]

template<typename K >
CGAL::Min_ellipse_2_traits_2< K >::Min_ellipse_2_traits_2 ( )

default constructor.

◆ Min_ellipse_2_traits_2() [2/2]

template<typename K >
CGAL::Min_ellipse_2_traits_2< K >::Min_ellipse_2_traits_2 ( const Min_ellipse_2_traits_2< K > &  )

copy constructor.

Member Function Documentation

◆ double_coefficients()

template<typename K >
void CGAL::Min_ellipse_2_traits_2< K >::double_coefficients ( double &  r,
double &  s,
double &  t,
double &  u,
double &  v,
double &  w 
)

gives a double approximation of the ellipse's conic equation.

If K is a Cartesian kernel, the ellipse is the set of all points \( (x,y)\) satisfying \( rx^2+sy^2+txy+ux+vy+w=0\). In the Homogeneous case, the ellipse is the set of points \( (hx,hy,hw)\) satisfying \( r(hx)^2+s(hy)^2+t(hx)(hy)+u(hx)(hw)+v(hy)(hw)+w(hw)^2=0\).

◆ is_circle()

template<typename K >
bool CGAL::Min_ellipse_2_traits_2< K >::is_circle ( )

tests whether the ellipse is a circle.