CGAL 5.1 - Algebraic Foundations
|
#include <Concepts/AlgebraicStructureTraits--IntegralDivision.h>
AdaptableBinaryFunction
providing an integral division.
Integral division (a.k.a. exact division or division without remainder) maps ring elements \( (x,y)\) to ring element \( z\) such that \( x = yz\) if such a \( z\) exists (i.e. if \( x\) is divisible by \( y\)). Otherwise the effect of invoking this operation is undefined. Since the ring represented is an integral domain, \( z\) is uniquely defined if it exists.
AdaptableBinaryFunction
Types | |
typedef unspecified_type | result_type |
Is AlgebraicStructureTraits::Type . More... | |
typedef unspecified_type | first_argument |
Is AlgebraicStructureTraits::Type . More... | |
typedef unspecified_type | second_argument |
Is AlgebraicStructureTraits::Type . More... | |
Operations | |
result_type | operator() (first_argument_type x, second_argument_type y) |
returns \( x/y\), this is an integral division. More... | |
template<class NT1 , class NT2 > | |
result_type | operator() (NT1 x, NT2 y) |
This operator is defined if NT1 and NT2 are ExplicitInteroperable with coercion type AlgebraicStructureTraits::Type . More... | |
typedef unspecified_type AlgebraicStructureTraits_::IntegralDivision::first_argument |
typedef unspecified_type AlgebraicStructureTraits_::IntegralDivision::result_type |
typedef unspecified_type AlgebraicStructureTraits_::IntegralDivision::second_argument |
result_type AlgebraicStructureTraits_::IntegralDivision::operator() | ( | first_argument_type | x, |
second_argument_type | y | ||
) |
returns \( x/y\), this is an integral division.
result_type AlgebraicStructureTraits_::IntegralDivision::operator() | ( | NT1 | x, |
NT2 | y | ||
) |
This operator is defined if NT1
and NT2
are ExplicitInteroperable
with coercion type AlgebraicStructureTraits::Type
.