CGAL 5.1 - Algebraic Kernel
AlgebraicKernel_d_1::Isolate_1 Class Reference

#include <Concepts/AlgebraicKernel_d_1--Isolate_1.h>

Definition

Computes an open isolating interval for an AlgebraicKernel_d_1::Algebraic_real_1 with respect to the real roots of a given univariate polynomial.

Refines:
AdaptableBinaryFunction
See also
AlgebraicKernel_d_1::ComputePolynomial_1

Types

typedef std::pair< AlgebraicKernel_d_1::Bound, AlgebraicKernel_d_1::Boundresult_type
 
typedef AlgebraicKernel_d_1::Algebraic_real_1 first_argument_type
 
typedef AlgebraicKernel_d_1::Polynomial_1 second_argument_type
 

Operations

result_type operator() (first_argument_type a, second_argument_type p)
 Computes an open isolating interval \( I=(l,u)\) for \( a\) with respect to the real roots of \( p\). More...
 

Member Typedef Documentation

◆ first_argument_type

typedef AlgebraicKernel_d_1::Algebraic_real_1 AlgebraicKernel_d_1::Isolate_1::first_argument_type

◆ result_type

typedef std::pair<AlgebraicKernel_d_1::Bound,AlgebraicKernel_d_1::Bound> AlgebraicKernel_d_1::Isolate_1::result_type

◆ second_argument_type

typedef AlgebraicKernel_d_1::Polynomial_1 AlgebraicKernel_d_1::Isolate_1::second_argument_type

Member Function Documentation

◆ operator()()

result_type AlgebraicKernel_d_1::Isolate_1::operator() ( first_argument_type  a,
second_argument_type  p 
)

Computes an open isolating interval \( I=(l,u)\) for \( a\) with respect to the real roots of \( p\).

It is not required that \( a\) is a root of \( p\).

Postcondition
\( a \in I\).
\( p(x) \neq0 | \forall x \in\overline{I}\backslash a\).